Navigation

    云、贵、川、渝IT人的圈子
    • Register
    • Login
    • Search
    • 主页
    • 问答
    • 话题
    • 热门
    • 圈子
    • 招聘
    • 活动
    • 项目

    一个简单的应用Python数据分析

    极客生涯
    1
    1
    13
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • 给
      给你我的爱 last edited by

      Python常用的函数库:scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。 小样本数据的正态性检验:夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显著水平时表示其不符合正态分布。 正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。 方差齐性检验:方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其均值偏离程度是否存在差异,也是很多检验和算法的先决条件。 图形描述相关性:最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。 正态资料的相关分析:皮尔森相关系数(Pearson correlation coefficient)是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。45b38d18-6c5c-4a27-89d5-f2ac828f6103-image.png

      1 Reply Last reply Reply Quote 0
      • First post
        Last post
      给
      千
      I
      Y
      E
      O
      A
      社
      8
      玻
      U
      A
      大
      A
      黑
      低
      天
      白
      快
      爱
      白
      美

      社群
      昆明网页设计交流吧
      友情链接
      • Funtask
      • Funtask 社区
      • SUWIS
      ©2019-2021 滇ICP备20006698号